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ABSTRACT.—Detection has been a long-standing challenge to monitoring populations of cryptic herpetofauna, which often have detection

probabilities that are closer to zero than to one. Burmese Pythons (Python bivittatus [=Python molurus bivittatus]), a recent invader in the

Greater Everglades Ecosystem of Florida, are cryptic snakes that have long periods of inactivity. In addition, management actions such as
removal of every python encountered create challenges for estimating population size and quantifying effects of management using

traditional statistical approaches. We used Bayesian analysis of data collected from 59 visual surveys (144 person-surveys) covering a total

distance of 485.6 km (1,185.1 person-km) and radiotelemetry to estimate detection probability for Burmese Pythons. These estimates can

improve interpretation of encounter and removal data. We found that detection probability ranged from 0.0001 to 0.0146 depending on
whether effort units accounted for total human effort across multiple surveyors and statistical method used. On the basis of our surveys,

detection probabilities for Burmese Pythons are therefore likely <0.05, but factors such as the number of searchers or time of day may

improve detection probability. Traditional capture–recapture or visual surveys are, however, unlikely to yield accurate information on
Burmese Python population size or trends across time without cost-prohibitive effort. Consequently, novel methods development to

monitor or measure Burmese Python populations, including techniques better equipped to handle very low detection, are critically needed

for informative and reliable inferences about population size or the management effects of python removal.

Population management of reptiles can be complex, in part
because traditional field methods and data analysis techniques
are poorly suited to handle species with low detectability (Steen,
2010; Durso et al., 2011). Within reptiles, cryptic snakes can be
particularly challenging because of coloration and behavior,
long periods of inactivity, and their use of fossorial and arboreal
habitats (Durso et al., 2011). Despite this challenge, an important
component of population estimation and species management
includes calculating species-specific detection probabilities.
Detection and capture probability provide quantitative infor-
mation used to estimate the population size, number of survey
visits required for a species to be detected at a given level of
certainty, and the effort required to detect changes in population
size (Kéry, 2002; Sewell et al., 2012). Methods for calculating
detection probabilities that accommodate very few detections
are a vital research need for reptiles, especially those of
management concern.

Burmese Pythons (Python bivittatus [=Python molurus bivitta-
tus]) are native to Southeast Asia and were once considered a
subspecies of P. molurus, but were elevated to full species status
because of distinct morphological characters, co-occurrence in
parts of their respective ranges, and an apparent absence of
natural interbreeding (Jacobs et al., 2009; Schleip and O’Shea,
2010). They are one of the largest snake species in the world,
with adults exceeding 5 m in length. Despite their large sizes,
they remain difficult to detect (Reed and Rodda, 2011). Invasive
populations of Burmese Pythons have been established in
southern Florida for over 2 decades (Meshaka et al., 2000;
Willson et al., 2011a). Their presence has been linked to a decline
of native mammals in Florida’s Everglades ecosystem (Dorcas et
al., 2012; McCleery et al., 2015), with potentially cascading
ecological implications (Hoyer et al., 2017; Reichert et al., 2017;
Willson, 2017). In the Everglades, they are known to consume a
diverse range of vertebrate prey species, most of which are
native and a subset of which are also classified as endangered

under the U.S. Endangered Species Act (Snow et al., 2007; Dove
et al., 2011; McCleery et al., 2015). Estimates of site occupancy,
rate of spread, and population sizes are thus priority topics for
the management of Burmese Pythons in Florida and the native
species on which they feed.

Because of their cryptic coloration and behavior and the
habitat Burmese Pythons tend to occupy in Florida (Hart et al.,
2015; Walters et al., 2016), surveys are physically difficult and
costly to implement. Efforts to quantify presence, population
size, and effects of management actions have thus been
hampered by an inability to effectively detect individuals (Falk
et al., 2016). Alternative detection methods such as environmen-
tal deoxyribonucleic acid (eDNA) and ‘‘Judas snakes’’—radio-
tagged individuals that lead searchers to untagged animals—
have been explored as methods to improve detection and
removal rates (Piaggio et al., 2014; Smith et al., 2016). Although
novel field methods for detection are invaluable, integrating
their information into traditional statistical approaches to infer
effort required for detection, occupancy, and population size
estimation requires continued development. Better estimates of
detection probabilities for Burmese Pythons are critically needed
to monitor rate of spread, site occupancy, population size, and to
subsequently determine whether removal efforts are contribut-
ing to population declines or reduced site occupancy.

This study was designed to estimate detection probabilities
for Burmese Pythons from a combination of transect-based
visual surveys and radiotelemetry, because traditional mark–
release–recapture methods do not align with resource manag-
ers’ goals to remove every python encountered. We used
radiotelemetry on a subset of individuals to estimate detection
probabilities for Burmese Pythons when they were known to be
available for detection but did not attempt to estimate capture
probability because of zero recaptures. We used detection
probabilities to estimate survey effort (distance and number of
site visits) required to detect at least one individual or declare
their absence with 95% confidence (McArdle, 1990). We also
evaluated environmental and survey conditions that correlated
with detection.
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MATERIALS AND METHODS

Study Site.—We conducted our research at the southernmost
tip of Florida, in Southern Glades Wildlife and Environmental
Area (WEA). The Southern Glades WEA is in Miami-Dade
County, owned by the South Florida Water Management District,
and managed by the Florida Fish and Wildlife Conservation
Commission to help protect wildlife habitat as part of the Greater
Everglades Ecosystem restoration goals. The habitat consists of
sawgrass marsh, marl prairie, and tree islands intermixed with
artificial canals. We surveyed a single canal (C110) such that a
survey consisted of walking south on the western side of the
canal (4.1 km), crossing the canal (0.03 km), and walking north on
the opposite side of the canal (4.1 km) and ending at the starting
point on the opposite side of the canal (8.23 km total transect line;
transect start and end located at approximately Universal
Transverse Mercator (datum WGS84: 17R 551001, 2806523). We
a priori selected the survey site because the canal was a known
python hot spot on the basis of previous captures mapped on the
Early Detection Distribution Mapping System (EDDMapS;
https://www.eddmaps.org), had good visibility, was easily
accessible, and thus optimized detection conditions.

Visual Surveys.—We completed 59 surveys from 17 December
2012 to 10 April 2013 from 0822 h to 1452 h. We elected to
complete surveys during diurnal hours to take advantage of
increased basking behavior during cold months (Dorcas et al.,
2011) and to better synchronize with hours when telemetry
could occur. Surveys were typically completed by a two-person
team, although as many as five individuals participated on
some days. We captured three male pythons during 17
December 2012–19 January 2013 and implanted transmitters in
them. Those individuals were removed for periods of 5–13 d to
complete surgery. During their absence, up to five visual
surveys occurred. We removed every female and all male
pythons found after January 2013. Additionally, during this
study participants in the 2013 Python Challenget removed four
pythons from C110 (Mazzotti et al., 2016), which may have
reduced detection probability estimates. At the onset of each of
our surveys we recorded time, temperature, humidity, and wind
speed. We also recorded weather in the categorical format of
rain, overcast, partly cloudy, or clear. We downloaded nocturnal
minimum temperatures from the nearest National Oceanic and
Atmospheric Administration weather station (Homestead GEN
Aviation Airport, Florida US USC00084095) for the dates on
which surveys occurred.

Telemetry.—We transported three male pythons to the Univer-
sity of Florida, Fort Lauderdale Research and Education Center,
Davie, Florida, and intracoelomically implanted two radio
transmitters in each of them (frequency 167.000–167.999),
approximately one-third of the body length anterior to the
cloaca. The second transmitter served as a backup to minimize
loss of snakes (Walters et al., 2016). We used two transmitter
sizes: Holohil models SI-2 (11 g) and AI-2 (25 g) (Holohil Systems,
Ltd., Ontario, Canada). We held snakes up to 11 d before
transmitter implantation and released them at the point of
capture within 48 h of surgery. After their release, we tracked
pythons using handheld radio receivers on most days that a
visual survey was conducted, resulting in a tracking interval of
2–8 d. Tracking occurred from 16 January to 11 April 2013. When
we located an individual, we recorded location (63 m), whether
the python was visible, their behavior when visible, and a
description of the habitat. At the completion of this study all
pythons were removed and humanely euthanized using a

captive bolt gun through their cranium, to adhere to Institutional
Animal Care and Use Committee and permit requirements.

Statistical Analyses.—Detections were too rare to quantify the
effect of observer on detection. Additionally, because our goal
was to maximize total detection, we did not hold observer
number constant by survey day; instead we increased the
number of observers when additional labor was available. We
were thus uncertain of the degree to which individual observers
or having multiple observers conducting surveys on the same
transect on a given survey day affected detection. Therefore, we
computed survey effort in two formats: 1) cumulative kilometers
surveyed across all survey days (km) and 2) cumulative
kilometers surveyed across all survey days multiplied by number
of observers (person-km). In other words, effort for a two-person
survey team for a single day was calculated as either 8.23 km or
16.46 person-km. The latter calculation increased the per-unit
effort and thus generated a more conservative estimate of python
detectability. We estimated detection probabilities from two
python data sets: total python encounters and those exclusive
to pythons after radio transmitters were implanted and pythons
were known to be in the survey area on the day of a survey. We
used telemetry points to confirm that telemetered pythons were
at C110 during visual surveys and thus available to detect. For
calculations of survey effort specific to radiotelemetered animals,
we only included surveys during which telemetered snakes were
known to be within 10 m of C110 because they could be radio
tracked. For telemetry-based detection calculations, we omitted
detections before transmitter implantation because outside of the
detection event presence on C110 was unknown, yielding zero
detections for telemetered pythons. Because surgical implanta-
tion can have behavioral effects on snakes (Weatherhead and
Blouin-Demers, 2004) and telemetered pythons may have had
abnormal detection probabilities, using total captures despite
their unknown availability during nondetections was desirable.

Because management agencies do not allow traditional mark–
release–recapture methods for pythons and because of extreme-
ly low detection probabilities for cryptic snakes (Kéry, 2002;
Christy et al., 2010; Durso et al., 2011), mark–recapture methods
for estimating cryptic reptile population parameters may poorly
fit the data and generate biased estimates (MacKenzie et al.,
2002; Steen, 2010; Dorcas and Willson, 2013; Rodda et al., 2015).
Pythons were also removed temporarily—for transmitter
implantation—and permanently upon capture during these
surveys and by Python Challenge participants, causing sam-
pling to occur with and without replacement. We therefore used
two Bayesian estimation approaches more traditionally used
during risk analysis to estimate the probability of occurrence
and associated 95% binomial confidence intervals (CIs) when
zero to few events occur. Bayesian approaches allowed for
removal and nonremoval sampling, as well as large numbers of
surveys. The methods were thus suited to handle intensive but
uneven sampling effort and extremely low detections (Tuyl et
al., 2008). Bayesian probability of occurrence was interpreted as
an estimate of Burmese Python detection probability (p) that
accounted for effort, but not time to detection.

The first approach we applied was Jeffreys prior, which is a
compromise between Laplace binomial estimation and the more
traditional frequentist approach of maximum likelihood estima-
tion (Tuyl et al., 2008). The Jeffreys interval does not bias the beta
coefficient (p) to be centered close to 0.5. Jeffreys prior has default
hyperparameters that specify an equal-tailed beta distribution of
a = 0.5, b = 0.5, which we a posteriori modified to a posterior
beta distribution (a = 1.5, b = 4). The modified distribution
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reflected the assumption that p ‡ 0 and unlikely to be p > 0.50
(Fig. 1). We made this assumption because detection cannot be
negative and we detected pythons (p > 0), but studies
consistently generate low detection coefficients for cryptic snakes
(Kéry, 2002; Christy et al., 2010; Durso et al., 2011). Secondarily,
we applied the method of variance estimates recovery (MOVER)
developed from the Newcombe method using Jeffreys interval in
the ratesci package (Laud, 2018). The MOVER method provided
flexibility to account for temporary and permanent python
removals during the survey period. For consistency, we modified
the distribution to the a posteriori assumption of a reasonable
detection distribution for Burmese Pythons defined above. All
calculations were completed in program R v3.4.1 (R Core Team,
2013). We report p and 95% CIs for eight models on the basis of
alternate effort calculation techniques for 1) only telemetered
animals postimplantation and 2) all survey and detection events.

From the p estimates, we calculated the number of site visits
required to generate confidence at a specified level for presence
and absence. To calculate the number of site visits that would be

required to achieve up to 100% confidence that a python would
be detected when present (P), we used the formula P = 1 - [1 -
p]K (where K = number of site visits) described by MacKenzie
and Royle (2005) for each of the four p estimates generated for
the Jeffreys method. To calculate the number of site visits that
would be required to interpret lack of detection as true absence
with 95% confidence for each of our p estimates, we used the
formula described by Kéry (2002): N = log(0.05)/log(1 - p).

To evaluate if search conditions could improve the probability
of detecting a python, we ran a binomial linear regression with a
dependent variable of python detected (1) or not detected (0)
during a given day. We included survey start time, temperature,
humidity, and wind speed at the start of the survey as well as
minimum temperature the previous night, observer number, and
elapsed time (total time to complete an 8.23-km transect by all
observers minus any time spent capturing a python) as
continuous predictors with linear and quadratic effects on p.
We also included season (breeding [December–March] = 1;
nonbreeding = 0) and cloud cover (present = 1; absent = 0) as
binomial predictors. Because of small sample sizes and
comparatively large numbers of potential predictor variables
collected, we used an information-theoretic approach to evaluate
model support (Akaike’s information criterion adjusted for small
sample size [AICC]). We used a forward and backward stepwise
approach to identify the top five candidate models using the step
function and AICcmodavg package in program R (R Core Team,
2013). We selected the top model using the model with the
lowest DAICC to report potential relationships between predic-
tors and python detection from the five best-fit models
(Burnham and Anderson, 2002). Only one of the top five models
had a DAICC that was greater than 2, which is the minimum
value recommended to differentiate between candidate models
(Burnham and Anderson, 2002). Therefore, the frequency with
which parameters appeared in the top five models is reported as
a measure of effect size. We also report P values for the top
model to provide interpretative information, although Burnham
and Anderson (2002) recommend caution in interpreting P
values for information-theoretic modeling approaches.

RESULTS

The completed 59 survey days (144 person-surveys) cumula-
tively yielded 485.6 km surveyed or 1,185.1 person-km after
accounting for survey team size. Within those 59 survey days,
38 (90 person-surveys) were conducted on days in which one or
more pythons were available for detection on the basis of the
locations of telemetered snakes (Table 1). Six detections of six

FIG. 1. Beta probability density distribution for Burmese Python
(Python bivittatus [=Python molurus bivittatus]) detection probability (p)
under equal-tailed prior (a = 0.5, b = 0.5) and a posteriori probability
density (a = 1.5, b = 4) on the basis of assumptions about cryptic snake
detection.

TABLE 1. Survey effort by number of survey days or cumulative distance searched across all searchers (described as transect length of 8.23 km
multiplied by observer number [person-km]) for every Burmese Python (Python bivittatus [=Python molurus bivittatus]) detected during visual surveys
(All) on the C110 canal in southern Florida or for only individuals after radio transmitters had been implanted (Telemetry). ‘‘All’’ columns describe the
number of surveys or effort when a python was not known to have been removed from the area, but presence in the area was not known outside of a
detection. ‘‘Telemetry’’ columns depict only surveys after transmitter implantation and during which presence at C110 was known because of
coordinates from radiotelemetry irrespective of detection.

Identification

All Telemetry

Number of surveys Detections Effort (person-km) Number of surveys Detections Effort (person-km)

27 45 1 930.0 35 0 674.9
32 50 1 1020.5 38 0 724.2
60 40 1 855.9 20 0 411.5
61 14 1 321.0 - - -

102 28 1 567.9 - - -
107 34 1 707.8 - - -
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unique pythons occurred before any transmitter implantations
(0.10 pythons/survey day or 0.005 pythons/person-km sur-
veyed; Table 2). After implanting transmitters into the three
males there were no detections of telemetered pythons during
visual surveys, yielding zero detection events for telemetry-only
p estimations (Table 1). Of 62 total tracking events across all
three pythons, they were fully exposed only 14% 6 7% (range:
4–27%) of tracking events on average.

Bayesian CIs.—Detection probabilities for Burmese Pythons
were low. Depending on statistical method and effort unit, p
ranged from 0.0001–0.0146 (Table 3). The most liberal calculation
for python detection, which ignored unequal availability across
time and the effect of multiple observers, generated an upper
95% confidence limit of p = 0.03 (Table 3). Incorporating all
python detections improved detection probabilities, as compared
with only using telemetered animals (Table 3). Jeffreys methods,
which did not account for animal-specific effort, generated more
optimistic detection probabilities, such that incorporating varia-
tion in effort by animal using the MOVER method decreased
detection probabilities by 8- to 10-fold (Table 3). The most

optimistic detection probabilities suggested that at least 35–149

km of canal line need to be searched (Fig. 2), ideally broken

across repeated site visits (Fig. 3; at least five visits to complete 35

km given our study design) to ensure detection where pythons

were present.

Regression.—Model selection yielded a top model that included

observer number and a quadratic term for start time as predictor

variables (Table 4). Observer number had a positive correlation

with detection, such that for each extra observer up to five,

probability of detection increased onefold (z = 2.5, P = 0.01, 95%

CI = 0.3–2.3). Observer number was in all five of the top

candidate models. Start time as a quadratic term was in two of

the five top models and increased for later start times (z = 1.8, P
= 0.06, 95% CI = -0.3 to 14.7) until roughly noon and then

declined again (z = -2.0, P= 0.04, 95% CI = -17.9 to -0.9). Peak

probabilities for detecting a python occurred when surveys were

initiated from ~1030 h to 1315 h (Fig. 4). Elapsed time was

selected in two of the five top models and breeding season was

selected in one (Table 4).

DISCUSSION

Even the least conservative models suggested very low

probabilities that Burmese Pythons would be detected using

TABLE 2. Description of the Burmese Pythons (Python bivittatus [=Python molurus bivittatus]) encountered during surveys on the C110 canal in
southern Florida. Capture = date a telemetered python was first captured. Release = date on which a telemetered snake was released after transmitter
implantation. Snakes that were permanently removed on the day of capture and were not implanted with a transmitter have only a removal date.
Number of locations refers to the number of times a snake was relocated using visual surveys and radio tracking. All data were from 2013.a

Identification Sex Snout–vent length (cm) Mass (kg) Capture Release Removal Number of locations

27 M 216 7.5 4 Jan 16 Jan 4 Apr 26
32 M 171 3.8 11 Jan 16 Jan 10 Apr 25
60 M 293 16.8 19 Jan 1 Feb 9 Apr 12
61 M * * 18 Jan 1

102 F 153 18.5 18 Feb 1
107 M 165 16.4 4 Mar 1

a M = male; F = female; * = data were not available.

TABLE 3. Burmese Python (Python bivittatus [=Python molurus
bivittatus]) detection probability (p) on the C110 canal in southern
Florida and 95% confidence interval (CI) estimates from Jeffreys and
method of variance estimates recovery (MOVER). ‘‘All’’ columns
describe the number of surveys or effort when a python was not
known to have been removed from the area, but presence in the area was
not known outside of a detection. ‘‘Telemetry’’ columns depict only
surveys after transmitter implantation and during which presence at
C110 was known because of coordinates from radiotelemetry. Effort is
described as distance by survey day (km) and distance by observer
number (person-km). Absence is the number of site visits required to
have 95% confidence that a lack of detection indicates absence for each p.

Effort p

95% CI

AbsenceLower Upper

Jeffreys
All

km 485.6 0.0146 0.0064 0.0278 204
person-km 1,185.1 0.0060 0.0026 0.0116 498

Telemetry
km 312.7 0.0037 0.0003 0.0146 808
person-km 740.7 0.0016 0.0001 0.0063 1,871

MOVER
All

km Table 1a 0.0006 0.0000 0.0125 5,232
person-km Table 1b 0.0002 0.0000 0.0050 14,582

Telemetry
km Table 1a 0.0003 0.0000 0.0130 9,026
person-km Table 1b 0.0001 0.0000 0.0054 25,453

a Values represent survey number · 8.23 for each python in Table 1.
b Values represent person-km for each python in Table 1.

FIG. 2. Predicted survey distance required to detect Burmese
Pythons (Python bivittatus [=Python molurus bivittatus]) on the C110
canal in southern Florida on the basis of detection probabilities (p; black
line) and 95% confidence interval estimates (shaded area) under the least
conservative scenario (Jeffreys - all snakes; Table 3). Open circles
represent actual effort to achieve cumulative detections, with all surveys
totaling 485.6 km searched.
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diurnal visual surveys with one to five observers. The least
conservative scenario generated similar estimates to capture

probabilities for captive Burmese Pythons in a large mesocosm
(Dorcas and Willson, 2013), whereas the more conservative
scenarios suggested detection probabilities close to zero.

Monitoring population trends for cryptic reptiles has been
suggested to require cost-prohibitive effort because of their low
detectability (Ward et al., 2017). Additionally, in an occupancy

framework—which we did not model because of data collection
methods—species with low detection probabilities require
numerous site visits to confirm absence with reliability (Durso

et al., 2011; Sewell et al., 2012; Steen et al., 2012). The number of
visits required to declare absence is inversely proportional to
detection probability, such that species with a detection

probability < 0.05 may require >60 visits to confirm absence
on the basis of occupancy models (Durso et al., 2011). In contrast
to our detection estimates, field application of eDNA to Burmese

Pythons has yielded a detection probability of 0.91 on the basis of
occupancy estimation (Hunter et al., 2015), which suggests that
management concerns such as range expansion may be more
accurately monitored through eDNA sampling than via visual

surveys. Although survey methods across the two studies are
not directly comparable, average per survey detection across the
six pythons detected was 0.03 6 0.02 in this study, which was

similar to estimates of 0.01 6 0.02 python detected per day in the
field when using Judas snake methods (Smith et al., 2016). Thus,
although alternative detection techniques may improve occu-
pancy estimation, Burmese Pythons are still likely among those
species for which monitoring population trends requires
extensive survey efforts and even still such methods would
likely yield large confidence intervals. A study on box turtles,
with a similarly low detection probability (0.03) as estimated
here, yielded a population abundance estimate with a 95% CI
that ranged from 28 to 1,360 individuals (Refsnider et al., 2011), a
range that represents vastly different management goals and
challenges. As a result, monitoring population trends or
estimating total population size remains an elusive goal until
better detection and population estimation methods are devel-
oped for cryptic species.

The least conservative calculations of p assumed that the
number of observers did not improve detection probability. The
regression analysis, however, indicated that observer number
had a positive effect on detection probability. Detection
probabilities estimated using person-km as a measure of search
effort may thus have encompassed important variation because
of observer effects, observer number, or total effort (Christy et
al., 2010; Ward et al., 2017). Differences in human searcher
ability is a known source of detection error, which can be
mitigated for but not necessarily eliminated by searcher
experience (Lardner et al., 2016). As such, the models that used
person-km as the effort unit may have generated more realistic
detection probability estimates for Burmese Pythons. Alterna-
tively, survey effort was often bolstered through the assistance
of volunteer observers. The perceived positive effect of observer
number may, therefore, reflect that more people opted to
participate when conditions were perceived as good rather than
that greater numbers of people improved the probability of
detection. Thus, the effect of observer number may instead

FIG. 3. Number of site visits required on the basis of specified
confidence levels that a Burmese Python (Python bivittatus [=Python
molurus bivittatus]) would be detected on the C110 canal in southern
Florida if one were present (P) for the four detection probability (p)
estimates generated using Jeffreys estimates. Lines represent detection
probabilities generated for survey effort for all python detections
(All.km), survey effort for all pythons scaled by number of observers
(All.person-km), survey efforts for only telemetered pythons (Tel.All),
and survey effort for only telemetered pythons scaled by number of
observers (Tel.person-km).

TABLE 4. Model rankings for the top five candidate models selected
by Akaike information criterion corrected for small sample size (AICC),
with associated DAICC and cumulative model weights (w + [j]) for
Burmese Pythons (Python bivittatus [=Python molurus bivittatus]) on the
C110 canal in southern Florida.

Model AICC DAICC w + (j)

b + Observer + poly(StartTime)2 34.4 0 1.00
b + Observer 35.9 1.54 0.62
b + Observer + ElapsedTime 36.1 1.68 0.45
b + Observer + poly(StartTime)2

+ ElapsedTime
36.2 1.76 0.29

b + Observer + Season 36.4 2.07 0.13

FIG. 4. Probability of detecting a Burmese Python (Python bivittatus
[=Python molurus bivittatus]) during visual surveys (p.vis) at the C110
canal in southern Florida on the basis of the time at which a survey
started (Start Time). Surveys started from 0822 h to 1452 h and were
converted to fractions of the day for analysis, but back transformed to h
for the plot.

28 M. G. NAFUS ET AL.

D
ow

nloaded from
 https://prim

e-pdf-w
aterm

ark.prim
e-prod.pubfactory.com

/ at 2025-08-11 via free access



reflect variance in environmental conditions that increased the
odds that Burmese Pythons were detectable.

With only six total detections we anticipated that the model
evaluating survey conditions that correlated with detection
would have limited power to detect significant relationships.
Therefore, the lack of an effect of any environmental variable
that was measured in this study was probably not a reliable
indication of the effects of environmental conditions on python
detection. Factors such as minimum and maximum tempera-
tures have been correlated with python movement (Hart et al.,
2015), and thus environmental conditions almost certainly can
affect detection. Given low detection probabilities, telemetry
studies may be a more cost-effective and powerful method to
understand environmental conditions that support python
activity and detection. Our models did, however, support that
survey conditions affected detection, with start time identified
as a predictor of detection. Start time is likely correlated with air
temperature effects on python behavior or diurnal activity
patterns. Regardless, methods used during surveys and
environmental conditions during the survey are likely to alter
the probability of detecting Burmese Pythons.

During this study the field methods implemented could not
fully control for known sources of bias. For instance, most of the
pythons detected were male, as were all the telemetered animals.
Male Burmese Pythons may have different movement patterns
than females (Hart et al., 2015; Smith et al., 2016). Movement
patterns in turn affect detection (Keiter et al., 2017; Siers et al.,
2018). Consequently, male snakes can have higher detection
coefficients than females (Christy et al., 2010). Additionally, the
bulk of these diurnal surveys were conducted during the
breeding season. Many snakes have seasonal or temporal
changes in behavior that can affect detection and parameter
estimation (Brown et al., 2002; Willson et al., 2011b). Habitat also
has known effects on detection (Melbourne, 1999; Kéry, 2002).
Because these surveys focused on a single transect line to
minimize habitat heterogeneity, the detection probabilities reflect
those expected along canals. In stark contrast to our highly
accessible transect along a canal, most of the Everglades is
remote, difficult to navigate, and seasonally inundated, which
are effects that would be anticipated to reduce detection
probabilities. Detection inferences for Burmese Pythons through-
out the Everglades thus cannot be made, although overall
detection probabilities are unlikely to be greater elsewhere.

A cold snap in 2010 resulted in an unknown proportion of
Burmese Pythons dying in the Everglades (Mazzotti et al., 2016),
such that Burmese pythons may have been less abundant
during our study than otherwise (Falk et al., 2016). Population
density should also affect detection such that denser popula-
tions should have greater detection probabilities (Keiter et al.,
2017). Variance in python density across their invasive range
will thus contribute to variance in detection probabilities in
specific locations, particularly when considering the invasion
front where populations exist at low densities. Although we did
not know the true density of pythons at the survey site, >100
pythons have been detected or removed from the vicinity of the
C110 canal over the last decade on the basis of EDDMapS
points. Continued removal of numerous pythons and low
detection probability argue against a small local population.

Results from this study suggest that Burmese Pythons in
Florida have extremely low detection probabilities, much like
other cryptic snakes (Kéry, 2002; Durso et al., 2011). Although
sampling using attractive lures, such as artificial refuges, can
provide detection enhancement tools for cryptic herpetofauna

(Engelstoft and Ovaska, 2000; Michael et al., 2018), they have
not been documented to function for large constrictors. Other
methods such as line distance or N-mixture models are
suggested to be ineffective for snakes (Rodda and Campbell,
2002; Ward et al., 2017). Novel tools, such as removal models,
for invasive species population monitoring are viable alterna-
tives to mark–recapture approaches, but tend to require
relatively high removal rates to generate accurate population
estimates (Davis et al., 2016). Consequently, novel method
development of population estimation techniques that are better
equipped to handle detection probabilities that are closer to zero
than to one, low rates of removal, or improve detection for
cryptic reptiles such as Burmese Pythons are critical needs for
making informative and reliable inferences about population
size or the effect of removal efforts on Burmese Pythons and
other cryptic invasive species.

The benefits of obtaining reliable population estimates from
ongoing control practices are the ability to monitor spatial and
temporal changes in populations, evaluate the effectiveness of
management strategies, and determine the cost/benefits of
different management actions.
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